If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56x^2+3x-10=0
a = 56; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·56·(-10)
Δ = 2249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{2249}}{2*56}=\frac{-3-\sqrt{2249}}{112} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{2249}}{2*56}=\frac{-3+\sqrt{2249}}{112} $
| 7p=26.88. | | -105=5(4n-5) | | 4x+20=3x+15=180 | | 18–5t=t | | 55x=495 | | 50t^2+100t-110=0 | | v-30+v+17+v-29=180 | | X+40+x-20+x=200 | | 24z-178z+16=0 | | 2(4x+4)=12x+3-4x+5 | | 20+7b=3b-20 | | -9v+-9=-9 | | 5n-5-6n=-8 | | 3r+15-r=41 | | (3x+7)/10=3 | | z-4+3z+z+4=180 | | 16-18k=-12k-16-8k | | 15+5b=15+5b | | 22-y/16=7 | | -13h-20=-15h | | 2c+2c+52=180 | | -2-d+2d=2d-10 | | 3x/10=3.8 | | 17c+7c+36=180 | | (x+8)/11=7 | | 6x-6/3=8 | | 9x+18=6(x+7) | | 5+4n=7=2 | | -8r-9=10-6r+1 | | 2+16.5s=4-7.5s | | 2+16.5=4-7.5s | | -27-5n=73 |